

CIPARS Farm Surveillance Component: Dairy Cattle

Presented by: Dr. Daniella Rizzo, DVM, MPH & Dr. Ellen de Jong, PhD

World Antimicrobial Resistance Awareness Week November 19, 2024

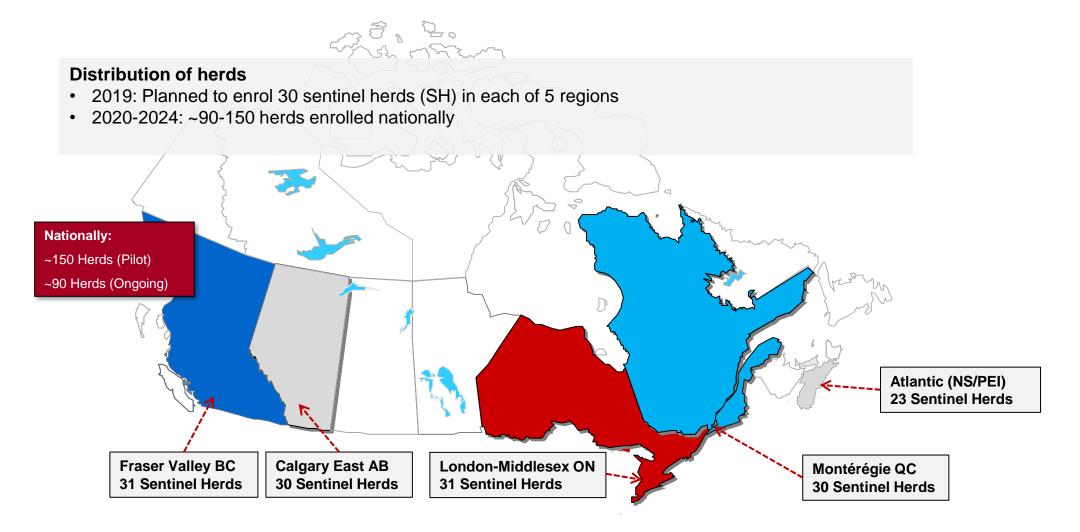
Public Health Agence de la santé Agency of Canada publique du Canada

Agenda

Dr. Daniella Rizzo:

Surveillance program overview

AMR results


Dr. Ellen de Jong:

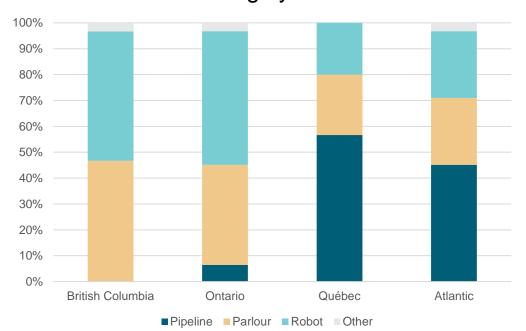
- AMU results
- Take home messages
- Acknowledgements

Canadian Dairy Network for Antimicrobial Stewardship and Resistance

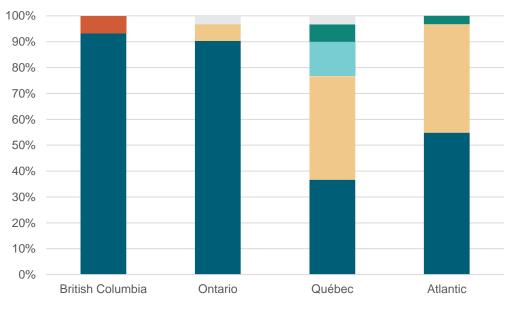
CaDNetASR

Component design: <u>https://doi.org/10.3389/fvets.2021.799622</u>

Similar to the national average


• Overall median (97) and mean (130) is close to the national average of 99 milking cows per farm¹

	British Columbia (n = 30)	Ontario (n = 31)	Québec (n = 30)	Nova Scotia/PEI (n = 31)	Overall (n = 122)
Lactating Cows	156 (52 - 338)	112 (49 - 470)	79 (45 - 310)	77 (39 - 321)	97 (39 - 470)
Dry Cows	20 (7 - 53)	16 (5 - 78)	10 (3 - 45)	14 (6 - 80)	15 (3 - 80)
Heifers	128 (0 - 370)	105 (30 - 374)	58 (18 - 160)	71 (20 - 300)	80 (0 - 374)
Calves	22 (1 - 52)	13 (3 - 71)	7 (1 - 20)	7 (0 - 40)	9 (0 - 71)


Median (Min – Max)

CaDNetASR Milking System & Housing Type, 2023

Predominant milking system shifted from parlour to robotic

Milking system

Housing type

■ Free Stall ■ Tie Stall ■ Tie & Pasture ■ Free & Tie ■ Free & Pasture ■ Free & Pole

Farm-Level Antimicrobial Resistance Results

Relevance of antimicrobial panel

Category	Antimicrobial in panel	Relevant products used on dairy farms
I	Cefriaxone/Ceftiofur	Excenel, Excede, Spectramast (LC and DC), Eficur, Cevaxel
	Ciprofloxacin	A180, Baytril, Forcyl
	Colistin	Special Formula
	Amoxicillin-clavulanic acid	-
	Meropenem	-
II	Ampicillin/penicillin/penicillin-novobiocin	Depocillin, Novodry, Polyflex, Procaine, Procillin, Duplocillin
	Azithromycin/Erythromycin	Draxxin, Micotil, Tylan, Zactran, Zuprevo
	Gentamicin	Cocci scour bolus, Calf scour bolus, Neo sulfalyte
	Cefoxitin/Cephalothin	Metricure, Cefa-Lak, Cefa-Dri
	Trimethoprim-sulfamethoxazole	Borgal, Trimidox, Norovet, Super Booster
	Oxacillin	Dry Clox
	Pirlamycin	Pirsue
	Nalidixic acid	-
	Streptomycin	-
III	Tetracycline	Cyclospray, Tetra-250, Onycin, Oxymycin, Oxyvet, Bio-mycin, Kelamycin, Liquamycin
	Chloramphenicol/Florfenicol	Nuflor, Resflor, Florkem
	Sulfisoxazole/Sulphadimethoxine	After calf bolus, Calfspan, Sustain bolus

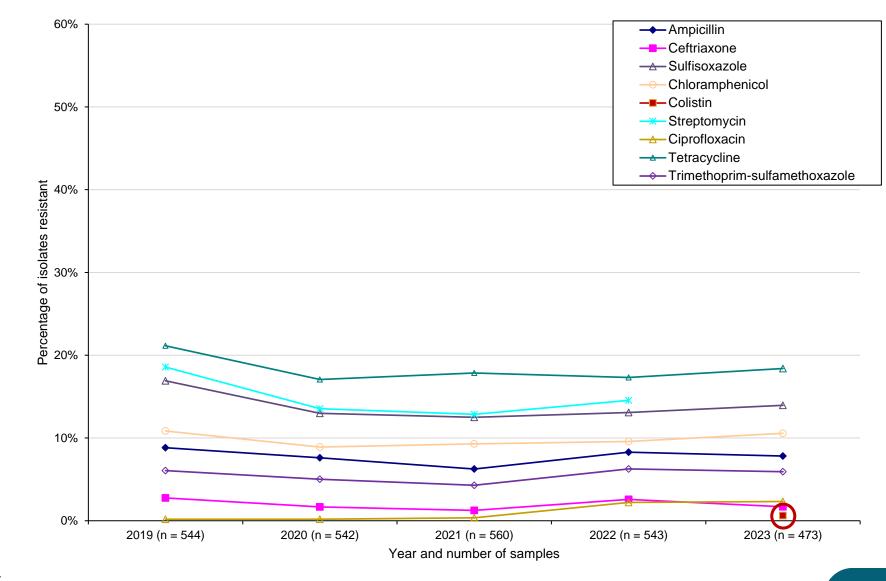
Categorization system developed by Health Canada's Veterinary Drugs Directorate

2023 Dairy Recovery Summary – Fecal Samples

Pathogen recovery levels are stable

	Escheri	chia coli	Salm	onella	Campylobacter		
Fecal samples	%	n pos/total	%	n pos/total	%	n pos/total	
Calf	100.00%	119/119	1.68%	2/119	24.37%	29/119	
Cow	100.00%	122/122	0.82%	1/122	81.15%	99/122	
Heifer	95.90%	117/122	3.28%	4/122	77.05%	94/122	
All fecal samples combined	98.62%	358/363	1.93%	7/363	61.16%	222/363	
Manure Pit	94.26%	115/122	7.38%	9/122	50.00%	61/122	
All samples combined	97.53%	473/485	3.30%	16/485	58.35%	283/485	

- Samples collected in ON, BC, QC, Atlantic (NS/PEI)
- No samples collected in AB


2023 Dairy Recovery Summary – Bulk Tank Milk

Recovered bacteria include intramammary species of interest, both potential pathogens and contaminants

- In the 2023 surveillance year, bacterial pathogens were recovered in 121 bulk tank milk samples
- Pathogens included:
 - o E. coli
 - Aerococcus viridans
 - o Enterococcus spp.
 - o Klebsiella spp.
 - Lactococcus spp.
 - Staphylococcus spp.
 - Streptococcus spp.
- In 2022, new procedures were implemented for sample storage (glycerol), which have improved bacterial recovery in bulk tank milk samples

Temporal trends in national *E. coli* resistance

E. coli resistance remains low with stable trends

*Isolates represented in these graphs include composite manure samples taken from pre-weaned calves, postweaned heifers, lactating dairy cattle, and the manure pit.

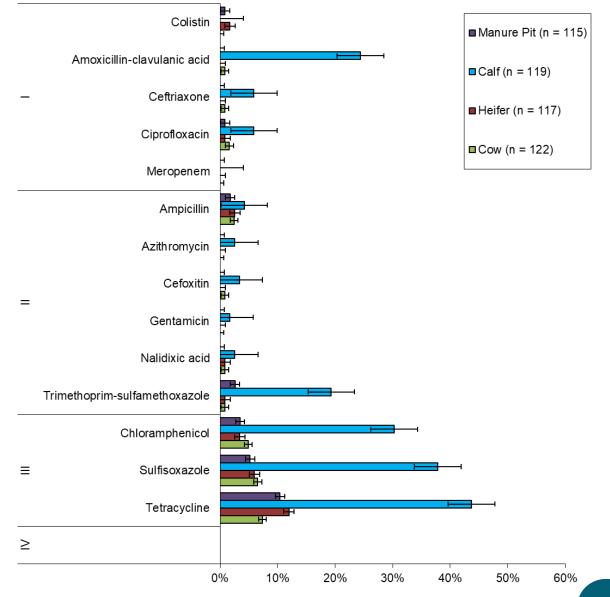
Note: In 2023 there was a panel change, streptomycin is no longer tested, and colistin was added

2023 National E. coli Resistance by Sample Type

edicine

b

based


antimici

٥f

Categorization

Resistance is most prevalent among isolates from calves

- Category III antimicrobials had the greatest resistance for all sample types
- This is consistent with what has been reported over the past 5 years

	2019	2020	2021	2022	2023
Manure pit	3	0	2	1	2
Calf	5	5	5	6	5
Heifer	5	3	2	2	2
Cow	0	2	1	1	2

Temporal trends in national Salmonella resistance

Monitoring increase in nalidixic acid and ciprofloxacin resistance*

60% Ampicillin Much lower Salmonella 📥 Sulfisoxazole Chloramphenicol recovery in 2023 compared Ceftriaxone Streptomycin 50% --- Gentamicin to previous years Cefoxitin Azithromvcin isolates resistant %0% Meropenem *Low isolate numbers make - Ciprofloxacin Amoxicillin-clavulanic acid trend interpretation difficult Colistin Nalidixic acid Trimethoprim-sulfamethoxazole Nalidixic acid and Percentage of ciprofloxacin resistance came from 3 S. Enteritidis 20% isolates 10% 0% 2019 (n = 28)2020 (n = 44)2022 (n = 28)2023 (n = 16)2021 (n = 41)

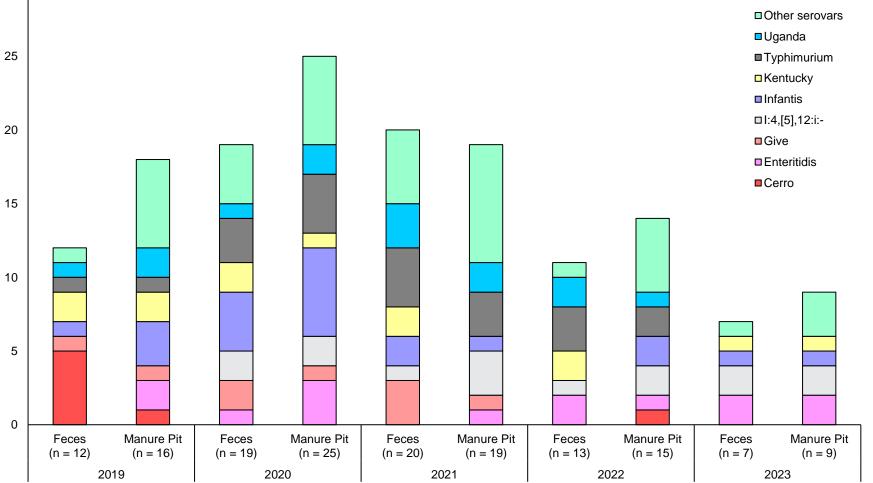
Year and number of samples

*Isolates represented in these graphs include composite manure samples taken from pre-weaned calves, postweaned heifers, lactating dairy cattle, and the manure pit.

•

•

٠

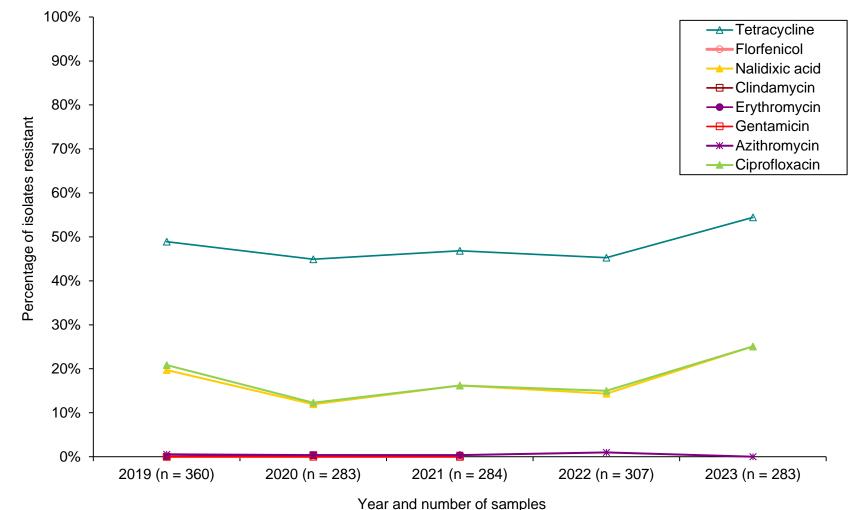

Note: Change to CMV5 panel in 2020 (due to samples being tested in different lab). In 2023: Streptomycin was no longer tested, and Colistin added

Temporal trends in national Salmonella serovar distribution

Fecal vs. manure pit sample types

Consistent recovery of Salmonella Number of Salmonella isolates Infantis, Enteritidis and Typhimurium

- Salmonella Dublin has ٠ not been recovered over the 5 years
- Low recovery in 2023 •

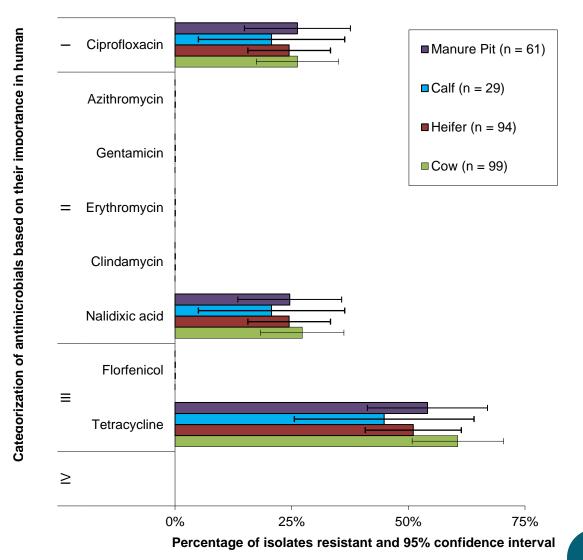


Sample type, year, and number of isolates

Temporal trends in national Campylobacter resistance

Emergence ciprofloxacin resistance

- Emerging ciprofloxacin resistance (4 *C. coli* and 67 *C. jejuni* isolates)
- 98% of isolates were C. jejuni
- Meropenem resistance was tested separately using an Etest in 2023


*Isolates represented in these graphs include composite manure samples taken from pre-weaned calves, postweaned heifers, lactating dairy cattle, and the manure pit.

Resistance levels are similar across all sample types

- All sample types are contributing to the ciprofloxacin, nalidixic acid and tetracycline resistance increase
- Resistance trends are stable across all years

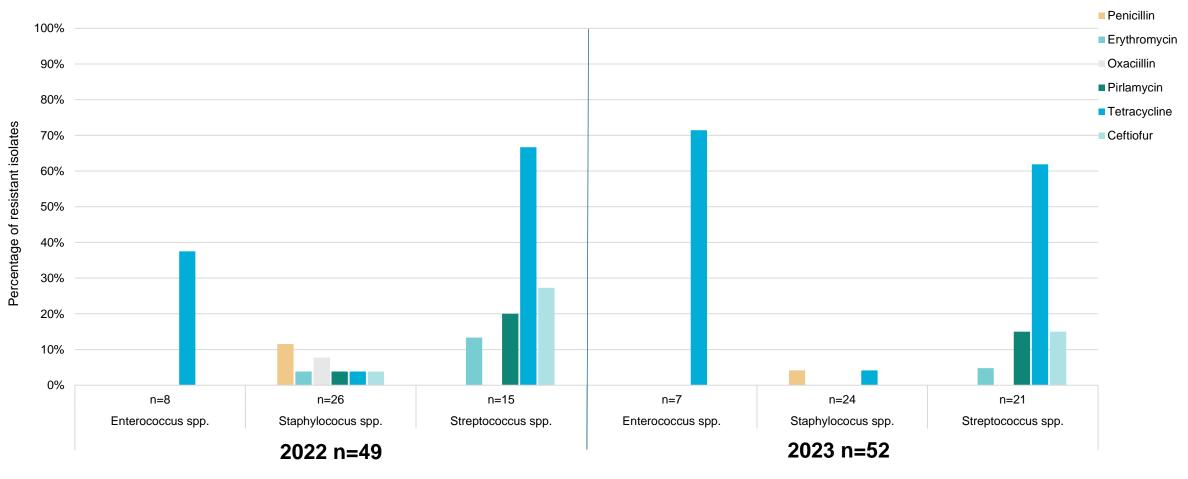
Number of antimicrobial classes where >5% of isolates showed resistance

	2019	2020	2021	2022	2023
Manure pit	2	2	2	3	2
Calf	2	2	2	2	2
Heifer	2	2	2	2	2
Cow	2	2	2	2	2

Bulk Tank Milk: AMR Data Interpretation

Limited breakpoint availability complicates interpretation

- AMR testing has been focused on *E. coli*, *Klebsiella* spp., *Staphylococcus* spp., and *Streptococcus* spp.
 - Other isolates may be tested for AMR in the future
- We are currently working to collect breakpoints for analysis
- Not all pathogens have available breakpoints hence data is limited
- Available breakpoints were obtained from CLSI and EUCAST; prioritizing:
 - 1. Human breakpoints where available;
 - 2. Cattle mastitis breakpoints where available
- Scoping review protocol: <u>https://atrium.lib.uoguelph.ca/items/a8c9abb5-8cdb-4687-afd2-954b7a569728</u>


AMR in G+ Pathogens from Bulk Tank Milk Samples

High AMR in Strep. dysgalactiae and Strep. uberis in 2022 & 2023

	Enteroc	custaecalis Enteroc	Staphyle	ococcus aue	sus suscalis	5 Stepto	alactiae parali	uperis ocuccus suis strepto	DCOCCUS UDEries	s custaecalis Enteroc	Stady Stady	ococcus auto	sus caris	Strept	alac ^{tiae} parati	beris Succussing Strepto	ococcus upe
				2022 (r									n = 52)				
	n=6	n=2	n=26	n=1	n=6	n=2	n=1	n=5	n=3	n=4	n=24	n=0	n=10	n=0	n=1	n=10	
Ampicillin	0%	0%		0%	0%	0%			0%	0%			0%				
Penicillin	0%	0%	12%						0%	0%	0%						
Erythromycin	0%	0%	4%	0%	20%	0%	100%	0%	0%	0%	0%		0%		100%	10%	
Oxaciillin			8%								0%						1
Pirlamycin			4%		17%			25%			0%		0%			30%	
Penicillin-novobiocin																	1
Tetracycline	50%	0%	4%	0%	83%	100%	0%	60%	100%	50%	4%		70%		100%	50%	
Cephalothin																	
Ceftiofur			4%		17%			40%			0%		10%			20%	
Sulphadimethoxine																	17

Comparing AMR in BTM pathogens, 2022-2023


Tetracycline resistance commonly observed across species

*Note that breakpoints were not always available for every *Streptococcus* spp.; hence different denominators were used for Streptococcus, based on the antimicrobial. **Also note that there were two fewer *Streptococcus* spp. (*S. canis* and *S. parauberis*) in the 2023 data, compared to 2022.

Low recovery of Gram-negative pathogens

- 2023: 15 isolates (12 E.coli; 1 K.oxytoca, 1 K.pneumoniae, 1 K.variicola)
 - o one E.coli isolate from Prince Edward Island was resistant to TET
 - o one K.oxytoca isolate from Nova Scotia was resistant to AMP
- 2022: 8 isolates (7 *E.coli*, 1 *K.oxytoca*)
 - o one *E.coli* isolate from Ontario was resistant to AMP, TET, AMC, SSS, SXT, STR
 - o two *E.coli* isolates were resistant to CIP and NAL (one from Ontario and one from Québec);
 - The Québec isolate was also resistant to CRO and SSS

Farm-Level Antimicrobial Use Results

- ~150 herds participate in the CaDNetASR program each year
- Veterinary dispensing data was obtained for ~75% of herds
- 2019-2022 data will be presented, 2023 data is pending
- Two indicators will be presented:
 - Defined daily doses (DDD) per 1,000 cow-days at risk
 - Milligrams per population correction unit (mg/PCU)

Example

Herd A: In 2020, used 60 bottles of a ceftiofur product on 200 lactating cows.

AMU indicator 1: mg/PCU (population correction)

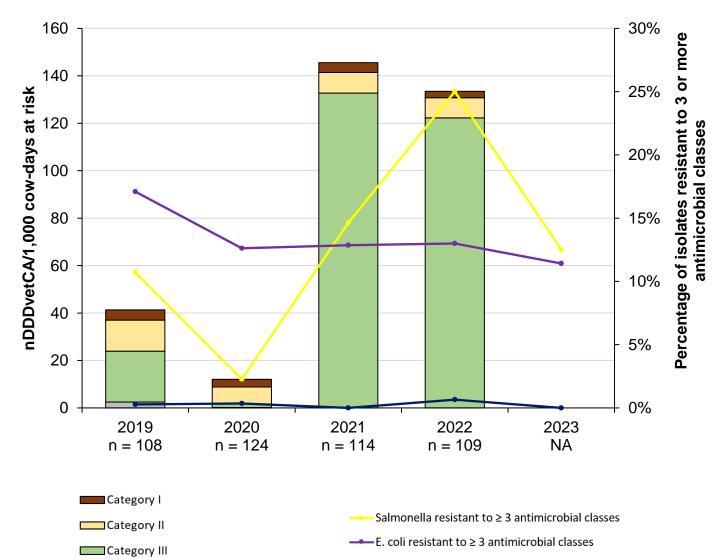
- For each product, mg active ingredient is defined (for this example product: 4000 mg ceftiofur per bottle)
- Corrected for average weight at treatment (650 kg per lactating cow)

 $\frac{\sum total annual mg dispensed}{\sum population corrected unit} = \frac{60 \ bottles \ \times 4000 \ mg \ = 240,000 \ mg}{200 \ cows \ \times 650 \ kg \ = 130,000 \ PCU} = 1.8 \ mg/PCU$

AMU indicator 2: defined daily doses

- Each product has been assigned a 'DDD' (for this example product: 650 mg per cow per day)
- Corrected for number of animals at risk (200 cows across the whole year)

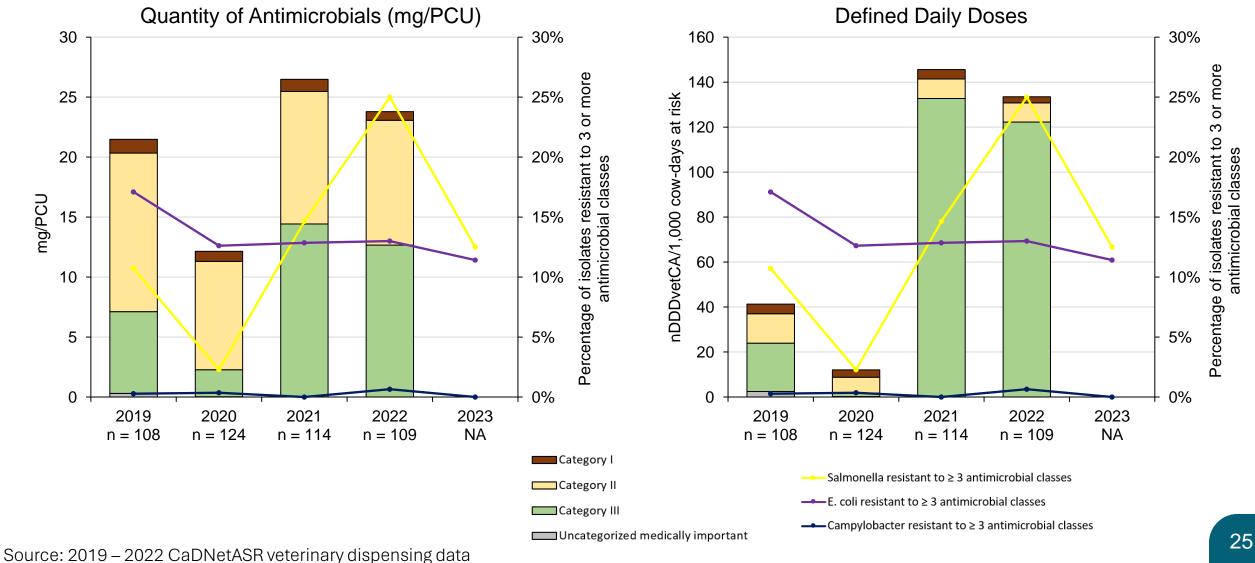
 $\frac{\sum \text{total annual DDD}}{\sum (\text{herd size} \times 365)} = \frac{240,000 \text{ mg} / 650 \text{ mg} = 370 \text{ doses}}{200 \text{ cows} \times 365 = 73,000 \text{ cow days at risk}} \times 1,000 = 5.1 \text{ DDD} / 1,000 \text{ cow days at risk}$


Antimicrobials used on dairy farms

Category 1 Very high importance	Categ High imp	Category 3 Medium importance	
Cephalosporins	Aminoglycosides	Lincosamides	Phenicols
(3rd and 4th gen) Excenel Excede 200	Cocci scour bolus Calf scour bolus Neo sulfalyte	Pirsue LS100	Florkem Nuflor Resflor
Eficur Ceftiocyl	Gentocin	Trimethroprim- Sulfamethoxazole	Sulfonamides
Cevaxel Spectramast (LC and DC)	Cephalosporins (1st and 2nd gen)	Borgal Trimidox	After calf bolus Calfspan
Fluoroquinolones	Metricure	Norovet TMPS	Sustain bolus
A180	Cefa-Lak Cefa-Dri ToDay	Super booster	Tetracyclines
Baytril Baytril oral		Penicilins	Bio-mycin
Forcyl	Macrolides	Depocillin Dupcillin	Cyclospray Kelamycin
Polymixins	Draxxin	Dry Clox	Liquamycin Tetra-250
Special Formula	Micotil Tylan Zactran Zuprevo	Novodry Polyflex Procaine Procillin	Onycin Oxymycin (LA and LP) Oxyvet (100 and 200)
			Trimethoprim

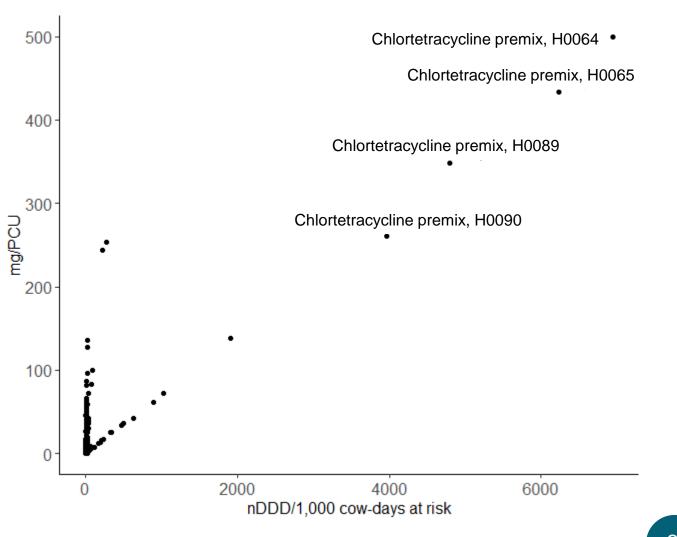
Integrated findings AMU and multiclass AMR

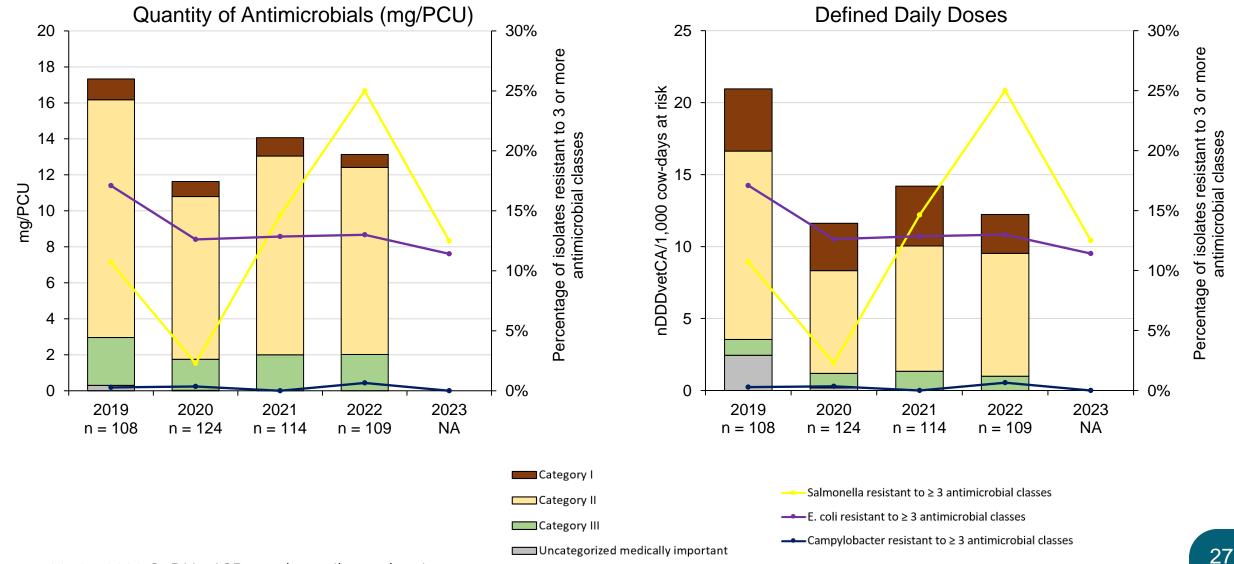
AMU increase due to increased reporting oral tetracyclines in feed and water


- AMU includes all production classes (calves, heifers, lactating cows, dry cows)
- Multiclass resistance covers fecal samples (not bulk tank milk)

Uncategorized medically important

——Campylobacter resistant to ≥ 3 antimicrobial classes

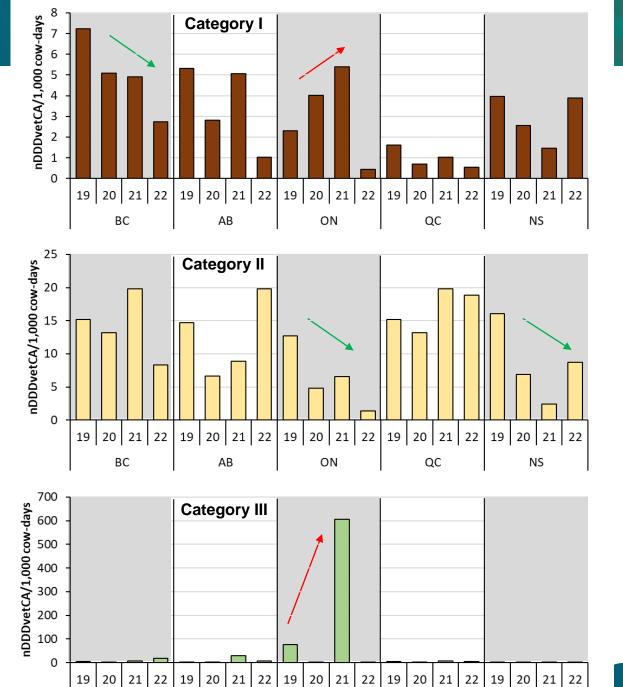

AMU impacted by indicator used


Comparing AMU indicators

Category 3 oral tetracyclines impact the differences between the AMU indicators

- Chlortetracycline premix products
- Low DDD (90 mg per animal per day)
- Typically administered to groups of animals
- Purchased and used in large quantities
- Few herds responsible for increase in total Category III use

Comparing AMU indicators– removing oral tetracycline



AMU per province

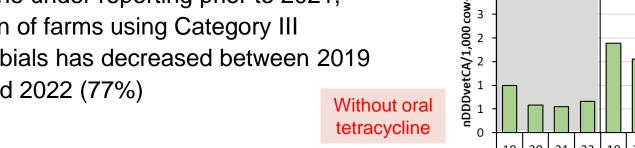
Proportion of farms using Category I decreased

- Includes all production classes (calves, heifers, lactating cows, dry cows)
- Proportion of farms using Category I antimicrobials has decreased between 2019 (94%) and 2022 (85%)
- Proportion of farms using Category II antimicrobials has remained stable between 2019 (99%) and 2022 (98%)
- Despite the under reporting prior to 2021, proportion of farms using Category III antimicrobials has decreased between 2019 (84%) and 2022 (77%)

ON

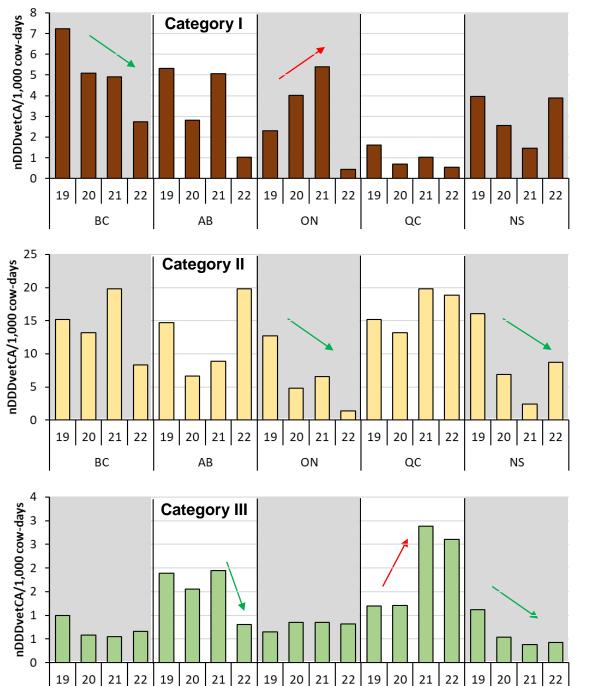
QC

BC


AB

NS

AMU per province


Proportion of farms using Category I decreased

- Includes all production classes (calves, heifers, lactating cows, dry cows)
- Proportion of farms using Category I antimicrobials has decreased between 2019 (94%) and 2022 (85%)
- Proportion of farms using Category II antimicrobials has remained stable between 2019 (99%) and 2022 (98%)
- Despite the under reporting prior to 2021, proportion of farms using Category III antimicrobials has decreased between 2019 (84%) and 2022 (77%)

BC

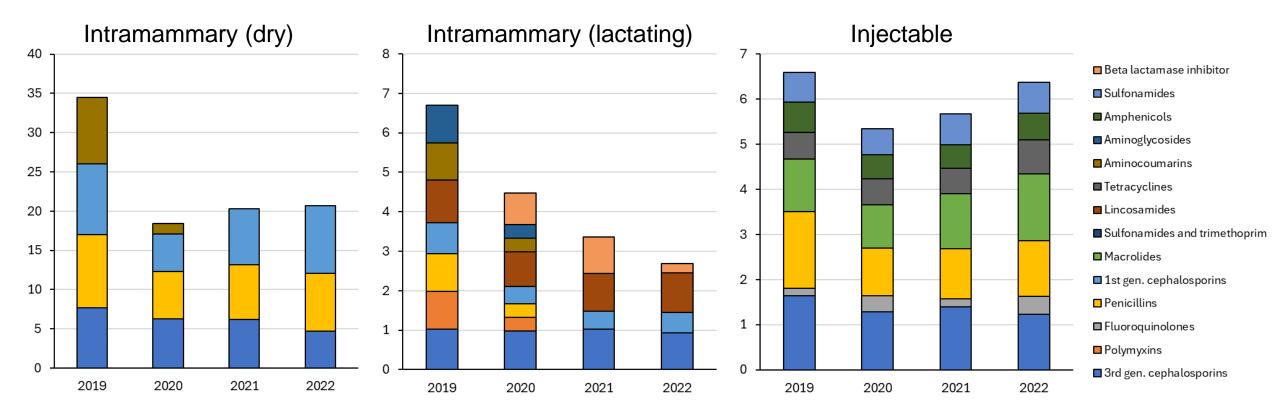
AB

ON

QC

NS

Reduction in cephalosporins and penicillins 2019-2022


DDDvetCA/1,000 cow-days at risk

		2019	2020	2021	2022	% change (2019 - 2022)
Category I	3 rd gen. cephalosporins	3.82	3.16	4.12	2.67	-30%
	Polymyxin B	0.47	0.08	0.00	0.00	-100%
	Fluoroquinolones	0.03	0.05	0.02	0.03	5%
Category II	Penicillins	6.47	3.93	3.92	3.64	-44%
	1 st gen. cephalosporins	3.73	1.90	2.82	3.38	-9%
	Macrolides	0.56	0.44	0.61	0.58	3%
	Sulfonamides and trimethoprim	0.53	0.45	0.54	0.54	3%
Category III	Lincosamides	0.24	0.24	0.17	0.20	-16%
	Tetracyclines	20.71	0.91	132.0	121.5	487%
	Aminocoumarins	2.45	0.18	0.00	0.00	-100%
	Aminoglycosides	1.56	0.19	0.64	0.20	-87%
	Amphenicols	0.46	0.39	0.36	0.40	-13%
	Sulfonamides	0.32	0.18	0.35	0.35	10%
	Beta lactamase inhibitor	0.00	0.00	0.02	0.00	N/A

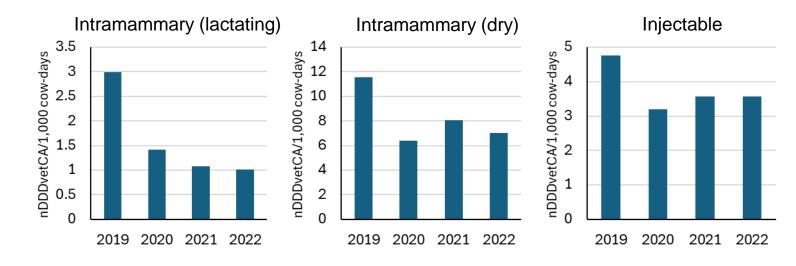
Source: 2019 – 2022 CaDNetASR veterinary dispensing data

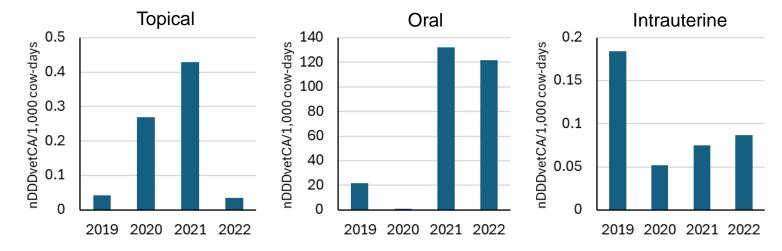
AMU per antimicrobial class, stratified by route of administration

Less antibiotic products available for intramammary treatments dry and lactating cows

DDDvetCA/1,000 cow-days at risk

Administration routes & category of importance

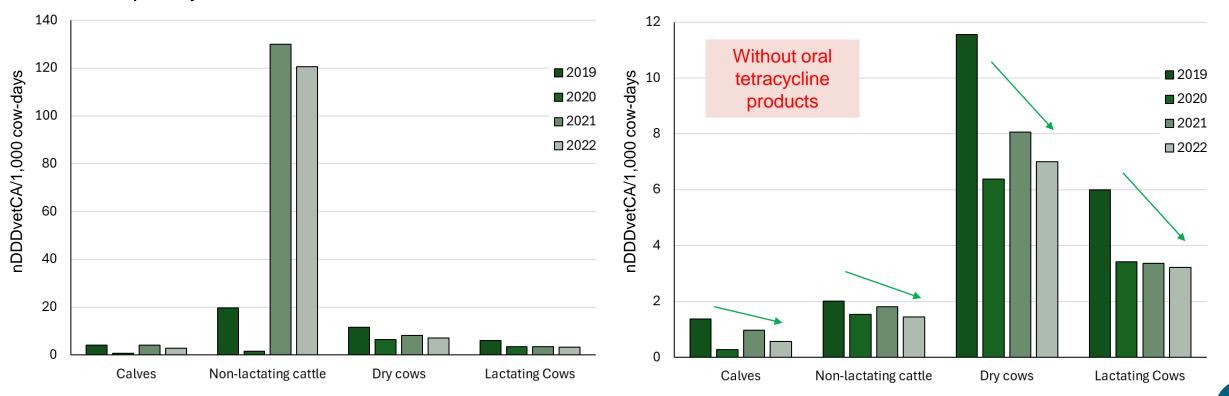

Most Category I and II products are injectables


Percentage of total kg active ingredients sold

	Category I	Category II	Category III
Injectable	66%	91%	9%
Intramammary (dry)	26%	7%	0%
Intramammary (lactating)	8%	1%	0%
Intrauterine	0%	0%	0%
Oral	0%	2%	90%
Topical	0%	0%	0%

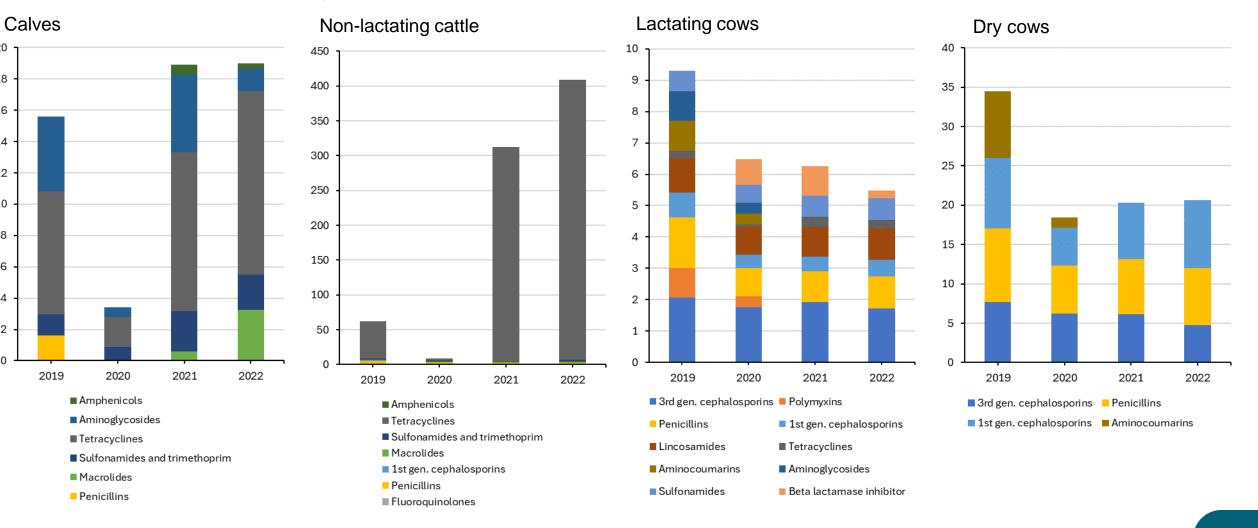
Reduction in intramammary and injectable use

- Includes all production classes (calves, heifers, lactating cows, dry cows)
- Oral and topical products are almost exclusively Category III



AMU per production class

Decrease across classes when excluding oral tetracycline


- Majority of use is attributed to dry cow therapy
- Non-lactating cattle includes products with designation 'not for use in dairy/lactating cows' which are frequently used in calves and heifers

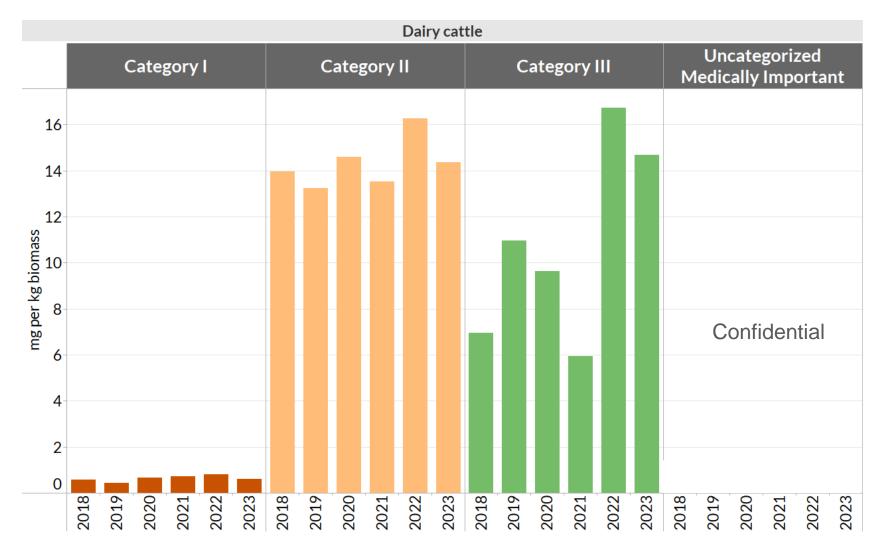
AMU per antimicrobial class, stratified by production group

Tetracyclines used mainly in calves and non-lactating cattle

DDDvetCA/1,000 cow-days at risk

Source: 2019 – 2022 CaDNetASR veterinary dispensing data

Veterinary Antimicrobial Sales Reporting: Dairy Cattle


Similar conclusions drawn from VASR data

Sales for dairy cattle are primarily Category II and III antimicrobials.

 Top classes (as of 2023) include tetracyclines, TMS, and penicillins

Sales are primarily for use in feed, followed by use in water and intramammary use.

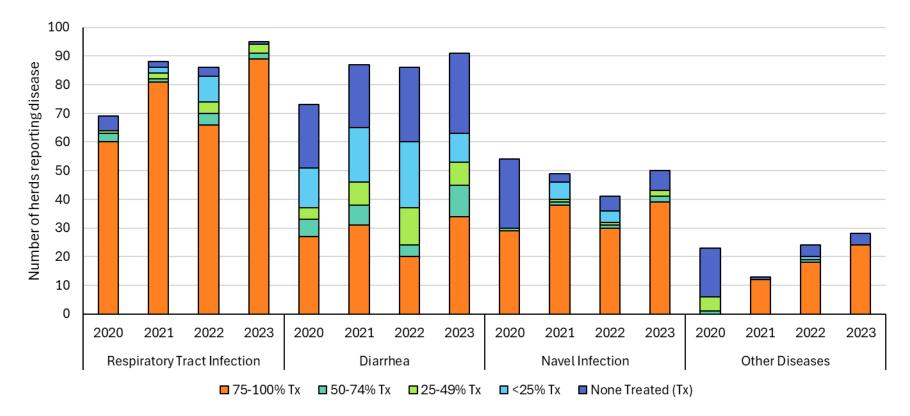
Category I antimicrobial sales are for intramammary use and use by injection.

*Uncategorized medically important antimicrobial sales not shown due to confidentiality

Putting our dairy data into perspective

National veterinary sales data (VASR)

kg sold

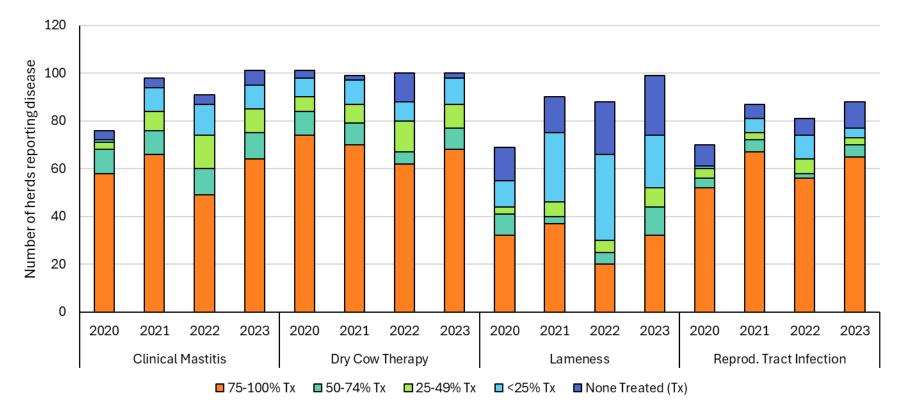

1.Pigs
2.Beef cattle
3.Poultry
4.Dairy cattle
5.Aquaculture
6.Cats and dogs
7.Veal calves
8.Horses
9.Small ruminants

mg/kg biomass 1.Pigs 2.Veal calves 3.Poultry 4.Beef cattle 5.Aquaculture 6.Cats and dogs 7.Dairy cattle 8.Small ruminants 9.Horses

Questionnaire data: reasons for use - calves

Respiratory disease is a major driver of use in dairy calves

• Respiratory and intestinal infections in calves were reported by a majority of farms

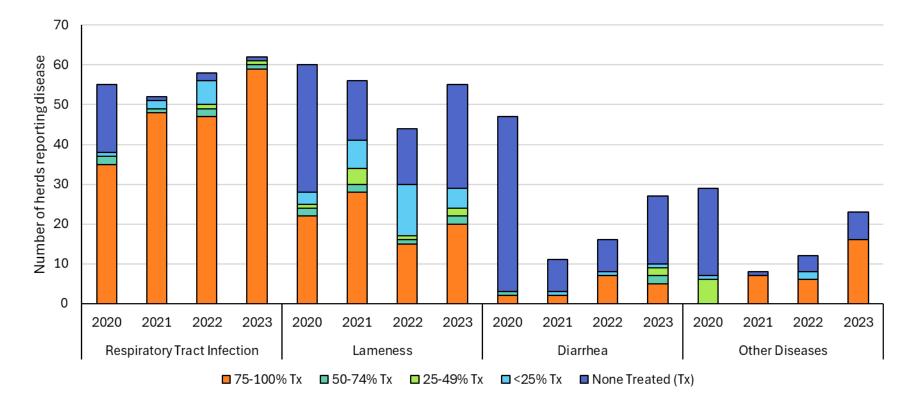


Proportion of cases treated (Tx)

Questionnaire data: reasons for use - cows

Clinical mastitis and dry cow therapy remain drivers of use in cows

 Clinical mastitis, dry cow therapy, lameness and reproductive tract infections were reported by most farms



Proportion of cases treated (Tx)

Questionnaire data: reasons for use - heifers

Respiratory tract infections remain high drivers of use in heifers

• Lameness and respiratory tract infections were reported by just over half of participating farms

Proportion of cases treated (Tx)

Take-Home Messages – Antimicrobial Use

First presentation of comprehensive results since the start of program	Total category I and II use has fluctuated between 2019 and 2022	Fewer herds used Category I antimicrobials in 2022 (vs. 2019)	Dry cow therapy remains responsible for majority of antimicrobial use
Differences between provinces present	Underreporting of oral tetracyclines prior to 2021 complicates comparisons over time	Accessing feed mill data (including medicated milk replacers) is challenging	Respiratory tract infections most often listed as reason for use across animal groups

Take-Home Messages – Antimicrobial Resistance

E. coli resistance is low with stable trends, but most prevalent in isolates from calves Low Salmonella recovery in 2023. No recovery of *S.* Dublin to date

Emerging ciprofloxacin resistance among *Campylobacter* isolates Large proportion of bulk tank milk sample isolates resistant to tetracycline

Acknowledgements

- PHAC-CIPARS
- CaDNetASR contributors
 - Prince Edward Island Laboratory
 - Field workers
 - Regional project managers
 - Academic and federal collaborators
- Dairy Farmers of Canada

Questions?

